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PREFACE

The initial goal of this project was to fully design a multiple

computer shared memory system with a serial, rather than the

conventionally parallel, transmission link. The shared memory was to

be distributed with each computer communicating with its own copy of

shared memory. Reads from the local copy of shared memory would occur

immediately while writes to shared memory would require a serial

transmission on the network to update all distributed shared memory

copies.

In the associated research and development process, data-driven

architectural possibilities were discovered and applied to the seri-

ally-linked shared-memory system under development. In the final

analysis, the data-driven concept application superceded the importance

of initial concepts and was by far the most exciting aspect of the

project.

The project started mid 1982 and has experienced Intermittent

progress. In late 1983, it was discovered that similar research had

been undertaken elsewhere [4], [51. These research goals did not

Include data-drlven structures and were simply defined to design a high

speed multiprocessor system.

This report has been difficult to formulate to assure a clear

understanding by the reader. The problem results from the multi-level

structure of the system being explained. The top level system must be

VIIIl
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understood before subsystem Interactions become clear and the sub-

systems must be understood before the top level system is comprehended.

This anomaly forces the author to repeat the concept explanations in

many cases.

The proposed system requires the user-programmer to understand

inherent limitations. In shared memory systems, errors occur when

multiple computers write to the same location simultaneously. The

writes are actually performed sequentially and the program in each

computer can not detect the sequence order. However, one write is last

and it remains as the memory data until overwritten. The same error

occurs in replicated shared memory systems. The error is manifested by

the fact that each copy of shared memory may have a different value for

the simultaneous write case. It is expected that this fact would

create havoc in the executing program. Another concern is the

scheduling of data-driven software in multiple computer systems. A

program is to be executed when data inputs become available, i.e.

change value. Inputs to a program may come from multiple

unsynchronized computers at unpredictable times. Without proper

synchronization control, transient errors in final and intermediate

data outputs may occur. Multi-computer synchronization is therefore

mandatory.

ix
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1. INTRODUCTION AN4D BACKGROUND

The objective of this project is to develop hardware and software

concepts supporting a data-driven serially-linked shared-memory network

for real-time applications. A small prototype demonstrator is to be

designed to support the concept development.

This project encompasses the digital system, computer network and

real-time application subjects. During the course of this document,

the author will introduce and support ideas that blend the three

mentioned subjects into a single innovative architecture. The 'glue'

for this blend is a unique data-driven hardware and software processing

scheme. To set the stage, the applicable research performed in support

of this project is now summarized.

COMPUTER NETWORKS

An important subject being actively researched in computer science

today is computer networking. Networks with performance measured In

terms including speed, cost, utility, efficiency, expandability and

reliability are currently being developed.

Networks are transmission media that permit communication between

two or more devices. The trAnsmission media can be Implemented by

electrical and fiber-optic m~eans and are categorized into many types

Including (1) Shared Memory, (2) Hierarchy, (3) Bus, (4) Star, and (5)

Ring. As these network topologies are examined, the final parameters

of the network being designed must be developed. The Initial

.. .. . . .
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attrihutes of the desired )Ctworlk arte:

(I) Shared random-access memory emulation, (2) Serial fiber-optic

transmission medium, and (3) Near autonomous operation of each"

networked computer. Attributes I and 2 conventionally Imply a serial

message scheme with a word count of two words per message; one word

Indicating the data address and the second word being the data.

The conventional shared memory network configuration is

illustrated in figure 1.1. Shared memory networks support parallel

communication among the networked computers by allowing all computers

to access a single common centralized memory. Any computer can access

any word of the shared memory at any time. Specified shared data words

can be arranged as semaphores to facilitate communication among the

computers. In some shared memory units, circuitry exists that enables

one computer to interrupt another computer for synchronization

purposes.

1/0(

STIARED
NEMORY

1/0 10

Figure 1.I Shared Memory Network Configuration
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Shared memory transmission media consist of typically 16 to 24

unidirectional parallel address lines, 16 to 32 parallel bidirectional

data lines and 3 to 10 control lines. Transmission speed is typically

I to 10 microseconds per single word transfer. Physical spacing

between the computers is limited to tens of feet due to the high speed

parallel transmission requirements, and electrical transmission line

characteristic limitations. There is no theoretical limit to the

number of computers able to be linked in a shared memory system.

However, shared memory access time increases with the number of

actively involved computers. Therefore shared memory systems typically

connect sixteen or less computers.

Real-time software utilizations of shared memory typically

configure the 'common block' of shared data variables in the shared

memory area. This configuration permits easy distribution of data among

the various software modules.

Hierarchy network configurations are illustrated in figure 1.2.

Hierarchy networks can be implemented by shared memory networks where

all networked computers will not access a single centralized shared

memory. There may be layers of shared memory networks to be pierced

before one computer may 'talk' to another computer. This structure was

demonstrated in the Cm* project [3] at Carnegie Mellon University where

50 PDP-11 computers were linked in a hierarchial network structure.

A bus network configuration Is illustrated in figure 1.3. Bus

networks support digital communication by one of the following schemes:

(1) time division multiplexing (TDN),

(2) frequency division multiplexing (FDM),
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K Figure 1.3 Bus Network Configuration. (NIH Network Interface Unit)



()carrier sense multiple access with collision detection

(4) token passing bus master control. i

The TDM scheme controls bus communication by allowing a single

node to transmit data during a specified repetitive time slot.A

The FDM scheme controls bus communication by assigning a specified

carrier frequency to each transmitting and receiving node pair. This

is similar to the control of the radio frequency airwaves.

The CSMAICD is a prevalent way to implement local area networking.

The scheme allows any node to transmit its message when it detects no

traffic on the bus. If by chance, two or more nodes transmit nearly

simultaneously a collision occurs and they immediately quit and perform

retransmissions at different delay times later. This sye..em is

efficient when transmitting large data miessages but not for small data

messages.

Token passing controls bus communications by allowing only the

node with the token to transmit. When communication is complete, the

token is passed to a node that needs to transmit. Token passing for

few word messages is not efficient. Since the message packet of the

thesis project is anticipated to be only two words long, CSMA/CD and

token passing were dropped from further consideration.

A star network configuration is Illustrated in figure 1.4. Star

networks also permit communication by TDM or FDM structures. All nodes

receive information simultaneously. A transmitting node must know when

to transmit or on what frequency band to transmit. This star structure

is ideal for fiber-optic systems with limited receiving dynamic range

which is currently a significant problem for fiber-optic bus
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Figure 1.4 Star Network Configuration

configurations. The central star connector Is a passive device.

However by inserting 'smart' multiplexing circuitry, the star could

govern all network transmissions allowing near-autonomous operation at

each star network tip. Therefore TDM or FDM protocols would not be

required.

A ring network configuration is Illustrated In figure 1.5. Ring

networks permit data transmission around a ring of networked computers.

Each node on the ring stores incoming data and then forwards the data

plus any self generated data to the next node on the ring. The node

that generates a data message must know not to forward that particular

message when received. A source node number field In the transmission

packet is therefore employed for this purpose. All nodes receiv'ing

message examine the source field to determine the source number and



7.

11

Figure 1.5 Ring Network Configuration

decide whether or not to forward the message.

Token passing Is an additional method to determine which node may

talk on the ring network. Similar to a source number field Is a token

field. When a node receives a message with the token field empty (e.g.

all zeroes) he may not talk or append messages on the ring.

Conversely, if the node desires to talk, it must discover a message

packet with a full token field, forward that message with ar empty

token field and then append any messages to the ring. The last message

the node transmits must have a full token field. Ring protocols

determine the maximum transmission time or volume a node may transmit

before relinquishing the token. If no tiode has data to transmit, a null

message with a full token field must be constantly transmitted around

the ring.

" ° o •' -. • . . . . p p • ,. . . -°"



Soon to be blended into the initial ring network configuration is

the author's version of a data-driven network architecture. However,

the prevalent data-driven, Data Flow architecture should be first

discussed in order not to confuse the subjects.

PREVALENT DATA-DRIVEN ARCHITECTURES

Currently available data-driven architectures are not similar to

the date-driven architecture proposed by this author. These

architectures are in line with Data Flow technology whereby a software

program is executed when the data Inputs to the program become

available. The hardware behind this technology is structured as a

large number of very tightly coupled arithmetic logic units (ALU's).

An ALU is presented a program when data inputs to the program are

available. This large numbered parallel ALU structure is a product of

the following philosophy: Since integrated circuit manufacturing

technology is very close to the theoretical limits, the only way to

Improve the performance of a computer is to compose the computer with a

large number of separate processing elements. Data Flow software

technology is being developed to efficiently use the numerous

processing elements as a very high speed computer. The architecture is

constructed to take advantage of parallel structures in the software.

That Is, all parallel elements of the software stucture are executed

simultaneously. Repeating, the proposed data-driven architecture is not

related to the data-driven Data Flow technology, although there is no

reason the two systems could not be integrated. The author's version

of 'data-driven' simply stated is that a program Is scheduled for

execution when any of the program's data inputs change value.
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REAL-TIME SYSTEMS

The connotation of 'real-time' in computer science terminology

varies from user to user. Simply, a real-time computer program

must execute at a rate greater than or equal to its input data rate.

While a computation response time of five seconds may be considered

real-time for one user group. one millisecond may be considered an

inadequate response time for another user group. Analog computers are

inherently real-time by reason that their summing and multiplying

functions are considered instantaneous and that analog integration is

solely deterministic time dependent. Von Neuman computers are not

inherently real-time and neither are the associated computer networks.

A real-time digital computer product is a function of the applied

software rather than the hardware. The hardware only performs its

programmed tasks as fast as technologically possible. The real-time

digital computer program simply repeats a calculation sequence that

approximates an analog process. The repetition rate is chosen so that

the calculation outputs appear continuous to the observer.

Shared memory systems for real-time application of multiple

computer systems permit quick and random access to shared data. The

data in the shared memory is typically structured as a Fortran common

block. The shared comon block may contain various date arrays and

assorted variables. These arrays and variables never change their

physical address during the run of a real-time program and are never

r swapped to/from secondary storage as may be the case in a single or

multiple central processing unit (CPU) interactive but non-rea]-time

japplication. The multiple computer shared common block provides an

easy way to declare data to be shared between several CPU's.



A MULTI-COMPUTER REAL-TIME FLIGHT SIMULATOR

The real-time system of concern can be best explained as a

multi-computer flight simulator. The flight simulator structure is

shown in figure 1.6. The pilot sitting in the cockpit views a dynamic

out-the-window (OTW) scene that simulates the actual OTW scene during

flight. One computer interfaces the cockpit joystick, throttle and I/O

devices, another computer generates the graphics while the main

computer calculates the equation of flight motion. The entire scheme

operates at a synchronous repetition speed so as to appear to be an

analog function to the pilot. This speed is normally 30 to 100

repetitions per second.

Considering the software to be basically configured as a

synchronous and repetitive polling structure and that apriori pilot

commanded inputs are not known and that fast response time is required,

the entire program must remain in each computer's main memory. There

is insufficient time for swapping programs to/from secondary memory no

matter how infrequently used.

To summarize the shortcomings of the flight simulator computer

configuration is to list the problems that the proposed data-driven

information network will solve. Namely,

(1) Due to the shared memory system, the computers must be physically

close.

(2) Due to the real-time software structure, large main memories are

required and secondary memories are not utilized.

(3) Computational power is continuously expended regardless of varying

workload requirements of the real-time system. For example, OTW

scenery is more dynamic when flying fast and low than flying high and

...
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slow. Workload requirements are a function of the OTW scenery

dynamics.

(4) Shared memory network bandwidth is continuously consumed, again

regardless of varying workload requirements.



2. DATA-DRIVEN SYSTEM REQUIREM1ENTS AN~D DESIGN SEC

After observing current network capabilities and program operation

deficiencies in the real-time arena, the requirements and design of the

data-driven information network for real-time multiple computer systems

was formalized.

The network requirements are derived from an optimized blend of

real-time application of available network components. The

requirements are:

(1) Shared memory emulation. To the host computer operating

software, the network must appear as a shared memory untt which implies

that the network is nearly transparent. This will permit an autonomous

or near autonomous program operation. Reads and writes to the shared

memory shall require no more host CPU time than conventional shared

memories which is approximately the same time as main memories (.5 to I

microsecond). To increase the thruput of the shared-m.!mory network, a

copy of the shared-memory is to be located at each networked computer.

Shared memory reads would involve only the computers locally owned copy

of the distributed shared memory while shared memo--y w-rites would

update all copies of distributed shared memory.

(2) Serial linking. To avoid bulky and limited distance shared

memory cables, high speed fiber-optic serial links shill be employed.

Shared memory transfer times shall be accommodated and with fiber-

optics, the distance between computers can be e~sily up to 10

kilometers.

13
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(3) Information only transfer. To lrzrease the efficiency of the

network, the only items transmitted on the network are data variables

that have been updated, or written to with new values. These new

values are termed 'information'. A data variable can only acquire a

new value as result of a write action by a CPU, or direct memory access

(DMA), to the particular data variable. Therefore only write actions

instigating new data variable values can instigate a network

transmission. The information only transfer gives birth to the data-

driven concepts of the entire system architecture. It should be

remembered that in conventional real-time systems of concern, the

majority of write actions to shared data variables do not modify the

variable value but would still demand a network transmission.

(4) Data address vectored interrupt (DAVI). When a computer

receives information from the network, an interrupt shall be generated

by the receiving node hardware directing the receiving computer to the

software needed to process the information. This technique is employed

to increase efficiency and to minimize the response time of the

reacting software program.

With these requirements in mind, the initial block diagram design

of the Serially-Linked Shared-Memory (SLSM) ring network is illustrated

in figure 2.1. A detailed block diagram of the network node is shown

in figure 2.2. These block diagrams Illustrate the major component

configurations: (1) Serial Communication Scheme, (2) Serial/Parallel

Transmission and Reception, (3) Distributed Shared Memory,

(4) Information Detection, and, (5) Data Address Vectored Interrupts.

The grouping of each local copy of the Distributed Shared Memory with

Serlal/Parallel Transmission and Reception, Information Detection, and

U7
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DAVI unit is labelled the Local Shared Memory Serial Interface Unit

(LSKSIU).

SERIAL COMMUICATION SCHEME

The serial format is basically an address followed by data. For a

1 Mbyte shared memory system, there would be 20 address bits followed

by 8 data bits. Each node on the network must be identified by a

number and this number must be appended to each message the node

generates.

SERIAL/PARALLEL TRANSMISSION AND RECEPTION

All address and data inside the node and the host computer is

operated on in parallel format. All network transmissions are

formatted serially. Therefore, a serial to parallel converting

receiver and a parallel to serial converting transmitter must interface

the network and node hardware. The transmitter must append its node

number to node generated messages. When receiving serial information,

the node number field must be examined to see if the message should be

forwarded.

DISTRIBUTED SHARED MEMORY

The shared memory emulation is implemented as a distributed shared

memory. An identical configured copy of the shared data variables

shall reside at each networked computer node in memory labelled local

shared memory.

INFORYATION DETECTION

Information is generated only when a host computer Is writing new

data to a shared memory location. Information is detected by a

.-



difference in any bit between the data currently stored in a shared

memory location and the data the computer is currently writing to that

location. Once detected, the new data together with its address is

loaded into a parallel/serial transmitter buffer.

DATA ADDRESS VECTORED INTERRUPT SCHEME

When new data is received from the network, the data address is

employed to fetch an interrupt vector fr% the interrupt vector lookup

table. An interrupt is then requested and the vector guides the

computer to the appropriate code to process the new data.

The basic concept structure of the entire system should now be

evident.

i

-I

.I
|1



3. NETWORY. IARDWARE CONCFPT EI.AORATION

The following hardware concept discussion descrihes a complete

generic configuration, of a data-driven Information network components

for real-time multiple computer systems. Figures 2.1 and 2.2

illustrated a block diagram of an entire Data-Driven Serially-Linked

Shared-Memory ring network.

SERIAL COWIUNICATION SCHEME

All serial transmissions are unidirectional point-to-point at an

approximate speed of 10 to 100 Mblts/second. The transmission speed is

selectable so as to obtain a desired system message capacity. The

format of the transmitted information is shown in figure 3.1.

Basically the information address followed by the Information data is

transmitted. A source number tag, parity bits, and messagc synchron-

ization bits are concatenated to the information address and data. The

source nurber tag indicates which LSHSI U is the author of the

transmitted information. Of course, a network of only two LSMSIUs dos-

not require a source number tag.

sync Source Number Data Address Data

Figure 3.1 Serial Information Word Foinat

11
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Fiber-optics are employed herein as no more than a very high speed

long distance serial transmission medium. However the ring

architecture was partially chosen due to the ease of implementation

with fiber-optics. Some applications of this architecture may realizej

that very high speeds are not required and conventional electrical

mediums may be sufficient. A parallel transmission scheme particularly

for short distances may be employed with this data-driven architecture.

The system designer or system Implementer must decide transmission

characteristics given the physical configuration of the system to be

designed. The system transmission parameters are: (1) Physical

distances between computer network nodes, (2) Number of network nodes,

(3) Speed of light in a fiber being approximately two-thirds of light

speed in a vacuum, (4) Message duration time which is the product of

transmission speed and the number of bits in a message, and (5) Number

of messages per second transmitted by each node.

Figure 3.2 illustrates the ring physical layout for the message

travel time analysis graph presented in figure 3.3. This graph

illustrates the significance of message transmission time as function

of the fiber distance. The system designer must compute the required

transmission rate (Mbit/sec) from the particular fixed variables of

distance between computers and system message capacity. Considering

the actual transmission time, it should be noted that the transmission

rate becomes less significant as the intercomputer distance increases.

And it should also be noted that higher transmission rate equipment is

more expensive and has a higher bit error rate than slower fiber-optic

systems. The other design consideration is the average and burst rate

thAt a host computer can write data, witli and/or- without information
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content, to the LSMSIU. This consideration takes into account, besides

the serial transmission parameters, the local shared memory speed,

information detection and subsequent control time, incoming data rates

from the network and the actual rate of information creation due to the

dynamics of the real-time software.

LOCAL SHARED MEMORY SERIAL INTERFACE UNIT

The Local Shared Memory and Serial Interface Unit residing on the

processor bus of each networked computer is the respective computer's

interface to the network. A block diagram of the LSMSIU is contained

in figure 2.2.

Each computer sends information to the network through its LSMSIU.

The LSMSIU contains a local copy of shared data and appears to be

identical to the host CPU as would be a conventional shared memory

system. When the host CPU reads shared data, he does so by reading his

local copy of shared data from the LSMSIU. Shared data reads assert no

external serial network action whatsoever. When the host CPU writes to

shared data, the LSMSIU checks for possible information content of the

written data. If information content is detected, the information is

transmitted for reception by all LSMSIU's in the network. Information

is present when the written data Is different than the data previously

residing at the concerned memory location.

The LSMSIU also receives information from other LSMSIU network

nodes. When the information is received, the Local Shared Memory (LSM)

is updated and a DAVI Interrupt is generated. The vector of the

interrupt directs the host CPU program counter to the software program

that must (or may) respond to the incoming information. This construct

permits the data-driven (or information driven)'aspects of this

..........................

............... ............................................
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project. 

The local shared memory interfaces to the host CPU bus by 

conventional CPU bus to memory cqmmunications. Essentially this is a 

parallel intPrface with address, data and control lines. This 

circuitry of the LSMSIU interface is nothing unconventional. The LSM 

word size is the same as the host CPU and the word --count must be large 

enough to accommodate the requirements of the software task at hand. 

The LSM has four access ports; one each for the host CPU,,the serial 

transmitter, the serial receiver and the information detection port. 

The information and transmitter ports are read only with the receiver 

port being write only and the host CPU port being read/write. 

Information is exclusively generated when the host CPU writes new 

data to a memory location; especially in this case to an LSM address 

location. It is possible for the host CPU to write data to a memory 

location that is not new. That is, the written data is the same as the 

data refiiding in the particular memory location before the write 

occurs. In this case, information is not generated. This situation 

often occurs with real-time system computations. By design, the LSMSIU 

shall transmit information on the external information bus as a result 

of the host CPU writing information to the LSM. 

To detect for information occurrence a data comparator is 

employed. When the host processor performs a write to local shared 

memory, the following sequence occurs: 

(1) The write action is detected. 

(2) The LSM reads and then stores separately tbe appropriate 

memory location contents for the impending compare action. 
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(3) The write data is then compared to ilt existing data from

step 2.

(4) If the data is new, the data is written to the LSM and is

sent along with its address to the serial transmitter where

it is transmitted on the information bus.

(5) If the data is not new, the sequence is terminated.

The serial transmitter is essentially a shift register and a

fiber-optic transmitter which transmits the LSMS1U generated

information to the downstream node. The transmitter receives the

information from the LSM. The transmitter can also contain a

First-In-First-Out (FIFO) buffer if the information is generated faster

than the network transmission speed.

The Data Address Vectored Interrupt mechanism involves the

fiber-optic serial receiver, the host processor interrupt circuitry

coupled with the vector address lookup table. The receiver is a shift

register that also contains a FIFO buffer to accommodate high burst

data rates. When information is received, th- ISM is updated and a

host CPU interrupt is generated. The vector of the interrupt is

determined by the contents of the vector address lookup table. The

address portion of the information received is employed for writing

into the LSM as well as retrieving the vector address from the table.

The table is loaded prior to run time with vectors for the DAVI

interrupt. The contents of the table directly point to the address of

the software program that must respond appropriately to the incoming

information. The DAVI circuitry may be programmed to respond to the

echoed reception of its own generated information.

.'



4. DATA-DRIVEN SOFTWARE CONCEPT ELABORATION

Software for this scheme is completely Snterrupt driven. The

interrupt occurs with the receipt of each word of information. It is

not hard to reason that the subsequent scheduling, of software model

responds to data-driven interrupts can be complicated. The success of

the scheme will depend on many factors Including: (1) interrupt

context switching time, (2) Ability to structure a large program as a

many module program with execution time efficient modules, (3) Ability

to separate time dependent and independent modules, and (4) Ability to

determine the required dynamaic workload of the real-time software in

order to program time dependent sensitivities. The data-driven soft-

ware concept can be explained by the following component discussions

followed by a flight simulator exam~ple.

REAL-TIME OPERATING SYSTEM

An operating system needs to be designed exclusively for real-time

applications of the data-driven system. It must schedule interrupt-

responding program execution, set dynamic interrupt priority levels,

swap memory in from secondary storge. In large systems where many

Interactive users may be present background tasks must also be

scheduled.

SECONDARY MEMORY UTILIZATION

With conventional synchronoufs real-time systems the input to

output response time averages one-halli thu frame time or about 10 to 15

262
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milliseconds. These systems can not use se. ondary swapping memory

since there is not enough time to detect that an input is requiring a

non-resident program to be executed, swap in the program and then

execute the program, all in 10 to 15 milliseconds. If the response is

required for human consumption, a 15 or 100 millisecond response time

is acceptable; the human can not tell the difference. With the

response time of concern, there is enough time tc swap in programs for

subsequent execution if the swap is commanded at the time of input

information creation and not at a time later when the input is polled.

The swappable programs should be the infrequently used or slower

required response time programs. The memory swapping techniques are a

typical concern of operating system technology.

DATA FLOW GRAPHICAL PROGRAMMING

To illustrate the interdependencies of the shared data and

corresponding data-driven software modules, a graphical approach is

needed in the programming-edit phase of the software development. This

graphical approach is similar to the conventional Data Flow graphical

approach to programming as illustrated in Sob [2].

HIGH ORDER LANGUAGE IMPLEMENTATION

Suppose that we are programming the proposed data-driven system In

Fortran or a similar language. In addition to the real-time cperating

system, the program would be a collection of DAVI interrupt handlers.

However, additional language constructs are needed to simplify the

programming process. A software subroutine would handle each DAVI.

Instead of a'return' statement, a 'return from interrupt' statement

would be needed at the end of each interrupt handling &ubroutine.



... ~" ' ' 

28 

DATA-DRIVEN REAL-TIME FLIGHT SIMULATOR SOFTWARE 

Consider the real-time flight simulator of Figure 1.6. The 

corr~sponding software flow graph is illustrated in Figure ,.1. 
Whenever a cockpit input variable changes, the respective software 

. • module is executed • Subsequent modules along the flow graph are . ·' 

executed until a module does not produce a change in its output. The 

flow then dies at this point. If the position, attitude or roll 

outputs change, the out-the-window scene is commanded to be redrawn. 
,• 
.• 

The flow graph for the simulator appears similar to an analog .· .· .· computer diagram including feedback constructs. This implies that 

along the flow, summations and integrations are performed. This 

similarity is not unintentional. Allowing for analog and digital 

1 
signal resolution differences the flow graph technique along with 

., 
data-driven constructs appears to be a viable approach to construct a 

real-time near-continuous system from digital components. 

No~, what happens if none of the cockpit inputs change? Surely 

the process must not freeze. The answer ••• there is always one input 

variable that never stops changing. That variable is the Time • The 

quantizing of this variable for the purpose of data-driving time 

dependent modules is the task of the Simulation Dynamic Worklo3d 

Assessment. (SDWA) module. The SDWA module is tightly coupled to the 

real-time operating system. This module must determine the sensitivity 

to time for each of the time dependent modules in the system. The 

sensitivity may be dynamic. That is to say that the OTW scene must be 

updated more frequently when flying low and fast than when flying high 

and slow. Admittedly, this time dependency calculation and module 

scheduling process appears to be a step backward toward the synchronous 
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repeating scheme we are trying to avoid. howe- er, time is treated only

as a dynamic shared variable data-driving the software. The workload

term is a result of fidelity maintenance of the simulation. To

maintain a reasonable fidelity with a desire increase the system

efficiency under a data-driven scheme, the software must 'work' harder

as the pilot flies lower and faster.



5. AJVANCEI) cYS",LM ELAbU ,'1 ION

During the course of the research performed for this project It

became apparent that the project could be eternally enhanced. Tie

basic structure is firm but capability extersion' and applications

appear unbounded. A discussion of several of tf.e extended capabilit)

applications follows.

SINGLE COMPUTER SYSTEM

It is possible that this data-driven system can be implemented

within a single computer system. The serial network transmission

scheme is not required. The LSHSIU circuit would receive its c.tn

transmissions as if the data were coming fhou, another computer. A

diagram of thL hardware is shown in figure 5.1.

10CAL SINCIE-NO)F
S H A R E D I N F D A V 1 L S F 'S ] 1 1.[

Mt;(ikRy DETECT

!' i 

1/0 MHEMCP

Figure 5.1 Single-Nodc Data-Urlvtr Compute y vtren"
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Data address vectored interrupts responding to changing data would

occur in identical fashion to the multiple computer data-driven system.

The real-time operating system will be more complicated and must be

able to handle interrupt driven recursion resulting from software

modules with tight feedback. These modules have an input which is

directly driven from the module output.

DATA VARIABLE SENSITIVITY

The system user will most likely not desire an interrupt to occur

when each variable changes by a small amount. For example, an

Interrupt is not needed when the aircraft simulator altitude changes

from 30,000 to 30,001 feet. Likewise, the OTW scene need not be

updated for this minute altitude change. Therefore, a data variable

sensitivity parameter needs to be introduced.

Implementation of the sensitivity would require 2 additional local

memories; one to store the sensitivity parameter for each data variable

and one to store the value of the data variable that last instigated a

DAVI. The original local shared memory would still contain the latest

and most precise value of each data variable. It is noted that the

sensitivity parameter can be implemented as an absolute value or as a

per cent value change in the dynamic data variable, e.g. a DAVI may

occur when the aircraft altitude changes by 300 feet or 1 percent. The

sensitivity parameter should be adaptive to dynamic conditions during

run time. For example, as the altitude decreases, the sensitivity

should most likely Increase. The LSMSIU with the sensitivity memories

is shown in figure 5.2.
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RE.AL-TIKE GRAPHICS IMPLEMENTATION

In many of the video (raster or stroke) graphics units, out theU

window scenes are generated by a series of line figures. The lines are

*periodically redrawn to give the effect of smooth motion. However, if

the motion is slow, identical picture are unnecess-arily updated and

redrawn. And if the motion Is very fast, the lines jump in quantum

leaps due to slow update rates.

Data-driven concepts can solve this problem by introducing a

data-driven scene dynamic factor. This factor would indicate the

absolute angular change in position of the physically nearest item in

the vfewport. Then as the angular position changes by an amount

greater than the angular sensitivity of the eye or resolution of the

video display, a DAVI would occur forcing a scene update. Also to be

considered is the speed of the graphics unit. There is no need to

command picture updates faster than the unit can draw a single picture.

MULTI-VARIABLE SYNCHRONIZATION

A special situation arises when one software module has several

inputs that are derived from a group of data-driven outputs from

another module such as the velocity calculation in figure 4.1. It is

required that the module is scheduled only once when any or all of its

Inputs change. It is undesireable for the module to be executed

unnecessarily.

Therefore, for modules with several data-driven outputs, an output

'flush' command is required. All outputs with changed values will be

transmitted contiguously with the flush command. If no outputs have

changed, nothing will happen with the flush command. In this mode, a

data receiving module will only be executed once for the output group.

14
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DATA TAGGING

Data tagging is a technique that adds t each data variable a

field indicating the type and precision of the variabie. Examples are:

a 3 byte integer, a 8 byte floating point number, a single byte

character or a single byte logical. This te:Iihlque saves space in the

instruction codes of the computer. For exar)f,, the op-code Indicates

add this to that, when fetching the operands, the tav field indicates

whether this and that are integers or reals, then according to the tag

field the proper integer or floating point mathematics is performed.

Normal shared memory alone does not know the type of the variable being

stored. Data tagging could assist the information detection,

transmission and reception process. To detect the degree of change in

a variable, the information detection unit must know the starting

address of the variable as well as the type of the variable. This is

especially true for variables that are longer than one computer word.

SERIAL TRANSMISSION ERROR DETECTION AND CORRECTION

With this system design, network transmission errors are

disastrous. In synchronous simulation syst,!; where all variables are

update continuously, a single variable error would vanish after one

frame time. But in this system a single error may be permanent.

Therefore effective error detection and c, rTection schemes are

required.

With the ring network architecture, messages are echoed back to

the originator. The originator can check th- ech red mc;sage for

errors. A retransmission scheme is required to correct the originator

detected errors. When the receiver detects an error and does not

detect a retransmission, he may reque-t a retrwuib|=Iss,I-, via a

14
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data-driven retransmission variable. :,-plementation of the

retransmission detection circuit appears cumbersome but possible.

Considering that 100 Mbit/sec fibei-optic links transmit 100 bits

In a microsecond, there is time available to include many error

detection and correction code bits.
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6. PROTOTYPE DESIGN

A two node system was designed to stbnport the validity of the

major architecture design. The system was decigned using readily

available Motorola MC68000 microprocessor computei boards which are

labelled 'Educational Circuit Boards (ECB).'

Each ECB contains: (1) a 4 Mhz MC68000 CPU, (2) 16 Kbyte Read-

Only-Memory (ROM) containing the supplied operating system, (3) 32

Kbyte Random Access Memory (RAM), (4) 2, RS-232 serial ports, one for

the terminal, one for the host computer if required, (5) parallel

printer interface with timer. Each Local Shared Memory Serial

Interface Unit hardware designed for this project includes (1) 256 byte

RAM, (2) 1 Mbit/sec electrical serial interface, (3) information

detection circuitry, and (4) microprogrammed control unit. A block

diagram of the MC68000 ECB and Network Node is shown in figure 6.1.

Shown on the left of the buffer is the MC68001.4 ECB and on the right is

the LSMSIU. The LSMSIU has no DAVI vector lookup table. This table is

to be implemented in the ECB memory. When serial information is

received, the ECB is interrupted and ECB hosted software reads the

address of the information data. This address is then to be used to

vector through the ECB based DAVI lookup table.

The documentation illustrating all features of the M68000 ECB is

available in t7]. The hardware schematics for a single LS4STU ring

network node is contained in Appendix 1. The microprogram operations

are listed in Appendix 11.

37

"

- V



tnr

tn

o to

oo

r4,

r41

I w



FF

39

HARDWARE STRUCTURE

The following discussion Is made referencing the Prototype

Hardware Schematics in Appendix I. The Block Diagram illustrates the

entire interconnection including the:

(1) Data Bus and Address Bus Structure including the Local Shared

Memory, Comparator and Adrs to Data Buffer,

(2) Microcontroller,

(3) 68000 ECB to LSMSIU Interface Buffer,

(4) Parallel to Serial Transmitter, and

(5) Serial to Parallel Receiver,

The LSMSIU data bus is an 8 bit tristate bus. The address bus Is

also an 8 bit tristate bus. The LSM is implemented by 2, 2114 1k by 4

bit RAM's. For easy implementation with an 8 bit address, only 256 of

the 1024 bytes are used. The comparator is implemented by 2, 7485, 4

bit comparators. A latch to the B front end of the comparator is

employed while the data bus holds the A front end data when making

comparisons from the ECB write data to the 2114 memory contents. The

A-B comparator output anded with the inicrc(ontroller comp-oe enable

signal are employed to direct the LSM write sequence to the new data or

no new data write subsequences. The 741s374 address to data buffer i.

employed when reading the address of the serially received information.

The microcontroller is implemented by 2 2716 EPROM's giving a 2k

by 16 bit controller. The outputs and sequen~ces are dencribed in

Appendix I

The 68000 ECB to LSMSTU Interface Buffer buffers address, data and

read, write and interrupt control signals between the ECB and LSMSIU.

The EI* line is a read/write strobe line asserted when the ECB is
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communicating with the LS?1SIU The DTACK and DTACK PIT* signal are

slave responses when the read or write process is complete. The LSM

IRQ* or 6800 IRQ* signals are asserted when the LSMSIU interrupts the

ECB. The A09 address lines indicates to the LSMSIU whether the ECE is

communicating to the LSM or the vector address 741s374 buffer. A09 - 0

indicates the LSM should be activated while a I indicates the vector

address buffer assertion.

The Parallel to Serial Transmitter consists of 2, 741s299 8 bit

shift registers and 1 74153 4-1 multiplexer. The serial out format is

in a simple binary format. It starts with a I microsecond high level

sync pulse fnlluwed by I microsecond low level followed by 8 bits of

address, MSB first and 8 bits of data, MSB lirst. When the

transmission is complete the bus returns te a low level. The shift

registert and multiplexer are completely controlled by the

microcntroller.

The Serial to Psrallil Receiver performs the complement process to

the transmitter. The receiver operates at a 16X sampling frequency and

employs 74163 counters frequency division to shift in the address and

data. The 2 shift registers clock in the address and data. When the

serial receive process is complete the receive requests an ECB

interrupt and the receiver remains busy until the serial data address

vector is read by the ECB.

HARDWARE OPERATIONS

The following operations can occur within the LSMSIU:

(1) ECB read of the Local Shared Memory,

(2) ECB write to the Local Shared Memory with:,
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(a) a data change with subsequent serial information

transmission or,

(b) no data change,

(3) Serial reception of information including a data write to the 4

Local Shared Memory with an ECB interrupt, and address vector read.

When the ECB commands a read of the LSM, the microcontroller

starts in the LSM read sequence. The 8 bit address lines are asserted

directly from the interface buffer. The data line buffer is asserted .

with the proper data direction. The 2114 RAM's are enabled driving

their contents on the data lines. DTACK is then asserted ending the

sequence.

When the ECB commands a write to the LSM, the microcontroller

starts in the LSM write sequence. The LSM data using the ECB driven

address lines is loaded into the comparator B latch. Then the ECB

driven data is asserted on the data bus and the comparator compares the

two data. If the data are identical the write old data subsequence is

commenced which is Implemented via an immediate DTACK. If the data are

not equal, the new data is loaded into the LSM and the serial trans-

mitter and a lengthy serial transmit sequence is begun.

The Serial to Parallel Receiver shifts in address and data

information without microcontroller control. When the receive process

is complete the serial receive done microcontrol sequence is begun

simultaneously with interrupting the ECB. Via the microcontroller the

received information is loaded Into the LSM and the address information

is loaded into the address to data buffer for the vector read process.

The vector read process is asserted similar to the LSM read process and

differs in that address bit 09 is asserted which commands the

................... . . ... . . . . .
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Info~rmationl address to data buffer to transmit Its data at this time.
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7. SUMMARY AN~D CONCLUSIONS

An integrated hardware and software architecture encompassing a

data-driven information network for real-tine multiple computer systems

has been introduced. Innovative highlights of the architecture are:

(1) A shared memory interface scheme for local area (less than 10

kcm) networked computers Involving fiber-optics.

(2) Dynamic data-driven scheduled execution of real-time

software.

(3) A scheme which enables swapping of programs in a real-time

environment.

The concepts of the architecture have been illustrated in a

tcookbook' fashion with a flight simulator system example as an

educational aid. The actual efficiency and community acceptance of the

scheme remains to be determined. The utility of the hardware scheme

with or without the data-driven software constructs appears beneficial

for real-time systems such as multi-computer flight simulators. The

scheme as it has been disclosed could be employed in non-real-time

applications of multiple computer systems. However, due to ineffic-

iencies of the scheme when sending a 'block' of data through the shared

memory, this system will most likely not be used in non-real-time

environments. Although, with some modifications slightly impacting

real-time network performance, the scheme could be made useful when

sending blocks of data.

To the application programmer the new hardware system is a simple

43
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shared memory for data communication. The programmer must implement

shared data programs with proper synchronization. Multiple computers

simultaneously writing to the same location is not allowed. In this

event, different copies of a shared memory data item may have different

values which would be catastrophic.

The software scheme is immature at this point. Extensive research

beyond the scope of a thesis project is required. The complexity and

utility factors of an implemented data-driven real-time operating

system remain to be evaluated. These factors need to be weighed

against those in current synchronous real-time operating systems. The

main idea behind the date-driven real-time system is to execute

software modules only when a data input to the module changes value.

This simply increases the efficiency of the system. The scheme can

become very complex with interactive modules containing multiple data

Inputs and outputs. Execution control of these modules must also

consider outputs from other modules queued for running on this or other

networked computers, as well as maximum and minimum rates of execution

(i.e. module 1/0 sensitivity to time). Without careful operating

system design, modules with multiple inputs arriving from several

external computers may execute much more often than necessary.

Th utility of the proposed data-driven replicated shared memory

network with fiber-optic serial transmission appears very high. No

hardware or software problems are expected with implementations of the

network and conventional synchronous real-time software. As indicated,

real-time data-driven operating system with the proposed network

requires further research.
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PROTOTYPE HARDWARE SCHEMATICS
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APPENDIX II

PROTOTYPE MICROCONTROLLER FIRMWARE

The microcode sequences illustrated on following pages control the

hardware sequences labelled:

(1) Writing data to the local shared memory main sequence,

Base address 600.

(2) Writing new data to the local shared memory subsequence,

Base address 200.

(3) Writing old data to the local shared memory subsequence,

Base address 100.

(4) Reading local shared memory main sequence,

Base address 700.

(5) Reading the new data vector address,

Base address 500.

(6) Serial Receiver done handler,

Base address 300.

The microcontroller is implemented with 2, 2K by 8 bit EPROMS and

there are 16 output control lines divided into high and low 8 bits.

The lines are defined as follows:

52
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High 8 bits:

I .

Bits 6 and 7 control the A and B select inputs to the output of the

serial transmitter. There are 3 output possibilities defined vhich are:

Bit 7, Bit 6, Output definition

0 0 low (orO0)

o 1 high (or 1)

1 0 undefined

1 1 shift register output is serial transmitter output

Bits 4 and 5 control the transmitter shift register state vhich are;

Bit 5, Bit 4, Shift Register State

o 0 Hold

o 1 Shift Right

1 0 Shift Left (not to be used)

1 1 Load

Bit 3 is the clock input to the shift register.

'1

Bit 2 is the local shared memory RAM enable line.

Bit 1 is the local shared memory RAM write enable line.

Bit 0 enable the 741s374 buffer to latch on to the address of the

serially received data.

Low 8 bits

Bit 7 enable the information detection data comparator.

Bit 6 clocks in the data to the B input of the comparator.

Bit 5 enables the 741s374 buffer to transmit the serially received data

address on the data bus lines for host computer read.

Bit 4 enables the host computer address to be transmitted on the address

bus.

0 0 lo (r O." .

0 1 hig (o 1) . ."

...... ...........
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Bit 3 enables the host computer data to be transmitted or received

to/from the data bus.

Bit 2 enables the data transfer acknowledge (DTACK) signal to the host

computer signifying the end of a data transfer to/from the host.

Bit 1 and 0 control the input to the sequencer vhich is defined as

follows:

Bit 1, Bit 0, Microcontroller control

0 0 no action

0 1 Reset the sequence; go to the idle state

1 0 Freeze control inputs inhibiting a major state change

1 1 no action

.-

"4 4
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MICRO CONTROLLER SEQUENCE: write old data subsequence
BASE ADDRESS: 100 hexadecimal

HEX CONTROLLER CONTROLLER CONTROLLER
ADDRESS HIGH BITS LOW BITS ACTION COMMENT

7 6 5 432 1 0 7 6 543 2 10

100 1 1 perform DTACK ending seq.
01
02
03
04
05
06
07

08
09
OA
OB
0C
OD
OE
OF

10
11
12
13
14
15
16
17

18
19
IA
1B
IC
ID
lE
IF

20
21
22
23
24
25
26
27
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MICRO CONTROLLER SEQUENCE: write new data subsequence
BASE ADDRESS: 200

HEX CONTROLLER CONTROLLER CONTROLLER
ADDRESS HIGH BITS LOW BITS ACTION COMMENT

765432 10 76543210 -

200 1 1 1 1 1 1 1 1 frz, 68k to A & D busses
01 1 1 1 1 1 1 ld xmitr & RAM, shift out1
02 1 1 1 1 1 1 1 shift out a 0
03 1 1 1
04 1 1 1 1 1 1 A7 on serial out
05 1 1 1 1 1 1
06 1 1 1 1 1 1 1 A6 on serial out
07 1 1 1 1 1 1

08 1 1 1 1 1 1 1 A5 on serial out
09 1 1 1 1 1 1
OA 11 11 11 1 A4 on serial out
OB 1 1 1 11 1
0C I1 I 1 1 11 DTACK; A3 on serial out
OD 1 1 1 1 1 DTACK
OE 1 1 1 1 1 1 DTACK; A2 on serial out
OF 1 1 1 1 1 DTACK

10 1 1 1 1 1 1 DTACK; Al on serial out
11 1 1 1 1 1 DTACK
12 1 1 1 1 1 1 DTACK; AO on serial out
13 1 1 1 1 1 DTACK
14 1 1 1 1 1 1 DTACK; D7 on serial out
15 1 1 1 1 1 DTACK
16 1 1 1 1 1 1 DTACK; D6 on serial out ".
17 1 1 1 1 1 DTACK

18 1 1 1 1 1 1 DTACK; D5 on serial out
19 1 1 1 1 1 DTACK
IA 1 1 1 1 1 1 DTACK; D4 on serial out
lB 1 1 1 1 1 DTACK
IC 1 1 DTACK; D3 on serial out
iD 11 1 1 DTACK
E i I 1 1 1 DTACK; D2 on serial out
IF 11 1 1 1 DTACK

20 1 1 1 1 1 1 DTACK; Dl on serial out
21 1 1 1 1 1 DTACK
22 1 1 1 1 1 1 DTACK; DO on serial out
23 1 1 1 1 1 DTACK
24 1 1 Reset; 0 on serial out
25 1 1 ditto; goes to base adrs 0
26
27

* V -
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MICRO CONTROLLER SEQUENCE: serial receive done handler sequence
BASE ADDRESS: 300

REX CONTROLLER CONTROLLER CONTROLLER
ADDRESS HIGH BITS LOW BITS ACTION COM~nT

76 54 32 10 76 5 43 21 0

300 1 1 Frz; rcvr'1s299 to A&D bus
01 1 1 1 1 1s299 to A&D, RAM write ens
02 1 1 1s299 to A&D,
03 1 Reset sequence
04 1 Reset sequence
05
06
07

08
09
OA
OB
OC
OD
OE
OF

10
11
12
13
14
15
16
17

18
19
1A
LB
IC
ID
LE
IF

20

22
23
24
25
26
27
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MICRO CONTROLLER SEQUENCE: vector address read sequence
BASE ADDRESS: 500

HEX CONTROLLER CONTROLLER CONTROLLER
ADDRESS HIGH BITS LOW BITS ACTION COMMENT

500 1 1 1 Frz; rcvr adrs to D bus
01 1 1 1 ditto
02 1 1 1 1 ditto & DTACK
03 1 1 1 1 ditto & DTACK
04 1 1 1 1 unfrz; reset sequence
05
06
07

08
09
OA
OB
0C
OD
OE
OF

10
11
12
13
14
15
16
17

18
19
IA
1B
IC
ID
IE
IF

20 '
21
22
23
24
25
26
27
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MICRO CONTROLLER SEQUENCE: local shared memory write

BASE ADDRESS: 600

HEX CONTROLLER CONTROLLER CONTROLLER
ADDRESS HIGH BITS LOW BITS ACTION COMMENT

76543210 76543210

600 1 1 1 Ram ena., freeze
01 1 1 1 1 Ram data to compar B input
02 1 1 1 68k data to compar A input
03 1 1 1 1 Compare ena. unfrz, res seq
04 1 1 1 1 ditto allows comparator
05 result to direct to proper
06 subsequence @ base adress
07 200 for new data write or

100 for old data write
08
09

OA
OB
OC
OD
OE
OF

10
11
12
13
14

15
16
17

18
19
IA
IB
IC
ID
1E
1F

20
21
22
23
24
25
26
27
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MICRO CONTROLLER SEQUENCE: local shared memory read
BASE ADDRESS: 700

HEX CONTROLLER CONTROLLER CONTROLLER
ADDRESS HIGH BITS LOW BITS ACTION COMMl~ENT

7 6 54 3 210 7 65 43 2 10

700 1 1 1 1 Frz, 68k to A&D bus,Ram ena

01 1 1 1 1 ditto
02 1 1 1 11 ditto &DTACK
03 1 1 1 1 1 ditto
04 1 1 1 1 1 Reset seq, unfrz, DTACK
05
06
07

08
09
OA
OB
0C
OD
OE
OF

10
11
12
13
14
15
16
17

18
19
1A
1B
'C
1D
1E
IF

23
21
22
23
24
25
26
27
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